Renal Physiology

Basics
2 kidneys
10-11 cm long
150g each
1 million nephrons/kidney
25% of cardiac output: RBF ~ 625ml/min/kidney
20% filtered: GFR ~ 125 ml/min (range 80-140ml/min)
Functions:

1. Excretion
 a. Metabolic endproducts
 Acid (organic or inorganic)
 Nitrogenous waste (urea)
 Nucleic acid turnover (uric acid/xanthine)
 b. Drugs/Toxins
 Filtration or secretion
 Often same disposal as acids

2. Maintenance of fluid volume
 Sodium and water regulation via RAA and in response to ADH

3. Maintenance of body fluid composition
 Na+, K+, Cl-, pH, Mg+, Ca+, phosphate, water

4. Hormonal regulation
 Renin
 Erythropoetin
 1,25 dihydrocholecalciferol

Glomerular filtration
Passive ultrafiltration of plasma across semipermeable glomerular membrane
Determinants of GFR:
 Glomerular permeability (Lp)
 Glomerular surface area (S)
 Pushing pressure (difference in hydrostatic pressure)
 Pulling pressure (difference in oncotic pressure)

 \[\text{GFR} = \text{LpS} \times (\Delta \text{hydrostatic pressure} - \Delta \text{oncotic pressure}) \]

(i) Glomerular permeability
 Fenestrated negatively-charged (anionic) capillary endothelial cell layer with microvilli
 Size and charge selective
 Free filtration of water and neutral molecules less than 26 Angstroms
 Some filtration of neutral/positively-charged molecules up to 60A
 No filtration of highly-negative molecules (albumin) or >60A

(ii) Transglomerular hydraulic pressure
 Autoregulation of afferent and efferent arterioles acts to maintain glomerular blood pressure at a constant 50-60mmHg
 Proximal tubular hydrostatic pressure effectively zero, except when downstream obstruction
(iii) Oncotic pressure
 Constant at ~25mmHg
 In normal conditions plasma proteins not filtered so Bowman’s space
 oncotic pressure zero

Autoregulation of glomerular filtration
GFR preserved across wide range of blood pressure (80 – 180mmHg) due to
2 complimentary mechanisms:
 (i) Afferent arteriolar myogenic stretch
 Laplace’s law governs that a rise in pressure/increase in radius
 (volume) increases wall tension
 Myogenic tone of afferent arteriole ‘pushes’ back; conversely
 relaxes when pressure/radius, thereby regulating flow into
 glomerulus
 (ii) Tubuloglomerular feedback (juxtaglomerular apparatus)
 Macula densa cells in distal tubule monitor flow
 Increased pressure – increased GFP – increased tubular flow
 Leads to production of substances (endothelin, TXA2, AT2) from
 granular cells of juxtaglomerular apparatus, leading to
 constriction of afferent arteriole

NB. Granular cells of JGA secrete renin in predominantly in response to low
 tubular chloride rather than sodium. Sodium follows chloride, leading to a rise
 in ECF volume and blood pressure (see appendix)

Assessment of glomerular filtration
GFR cannot be measured directly – needs to be estimated. Methods comprise
Plasma creatinine and other markers, mathematical formulae, and plasma
 clearance
(i) **Plasma markers**
 Creatinine
 Constant production in individual
 10% secreted – therefore typically overestimates GFR
 Patient to patient variation based on age, sex, muscle mass and
 race. Low production (little old ladies) overestimates GFR; high
 intake (bodybuilders) underestimates GFR
 Mathematical formula used to ‘normalise values’:
 (i) Cockcroft & Gault (individuals with normal function)
 \[
 \text{CrCl} = \frac{[(140-\text{age}) \times (\text{IBW in kg})]}{[\text{PCR}(\text{mg/dL}) \times 72]} \times 0.85(\text{women})
 \]
 Does not describe a linear relationship – see graph
 overleaf. Also calculates creatinine clearance, not
 glomerular filtration rate
 (ii) MDRD (individuals with impaired renal function)
 Modification of diet in renal disease (1999). Derived as
 a screening tool to identify patients with renal disease
Renal physiology

\[
GFR = 186 \times (PCr)^{-1.154} \times (age)^{-0.203} \\
\times (0.742 \text{ if female}) \times (1.210 \text{ if African American})
\]

Calculates GFR not creatinine clearance. Underestimates eGFR at high values. Therefore a number of hospitals give eGFR of > 60ml/min rather than a figure for high filtration rates. Requires fudge factor for blacks – not calculated automatically. New formula CKD EPI set to supercede MDRD as better predictor across range of GFRs.

Steady reciprocal relationship between GFR (or creatinine clearance) and serum creatinine (see below).

NB. Increased production (rhabdomyolysis, supplements) underestimates GFR. Reduced production (cirrhosis, reduced muscle mass, elderly) overestimates GFR.

Urea
Freely filtered but up to 50% reabsorption by tubule

Cystatin C
Nucleic acid breakdown molecule. Constant production, unaffected by diet, not secreted, expensive.

\[(ii) \text{ Clearance}\]
Best way of estimating GFR is by measuring clearance of a substance from plasma.
Clearance = the amount of plasma that is completely cleared of a substance per unit time.
\[
Cl = \frac{[U] \times V}{[P]}
\]

To be accurate the substance must:
Achieve steady state in plasma
Excreted solely by kidney
Freely filtered
Not secreted, reabsorbed or metabolised by tubule.
Good example inulin, but impractical. Typically creatinine clearance, but secreted by proximal tubule, thus overestimates GFR by 10-20% at normal levels. Overestimation greater as renal function deteriorates – more creatinine secreted. Radiolabelled EDTA most accurate (DTPA can be used but slightly secreted). Typically single injection of 51Cr-EDTA, then measure blood levels at specified intervals 2-5 hours after injection to demonstrate decay curve.

<table>
<thead>
<tr>
<th>Tubular function</th>
<th>Major site of electrolyte and glucose reabsorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximal tubule</td>
<td>Secretion of organic acids/drugs and toxins</td>
</tr>
<tr>
<td>Loop of Henle</td>
<td>Generation of osmotic gradient for variable water reabsorption (countercurrent mechanism)</td>
</tr>
<tr>
<td></td>
<td>Additional NaCl reabsorption</td>
</tr>
<tr>
<td>Distal tubule/</td>
<td>Hormone sensitive fine tuning</td>
</tr>
<tr>
<td>collecting duct</td>
<td>Aldosterone NaCl reabsorption K+ excretion</td>
</tr>
<tr>
<td></td>
<td>ADH Water reabsorption H+ excretion dependent on acid base status</td>
</tr>
</tbody>
</table>

Proximal Tubule
Divided into three segments: S1/S2 concerned with reabsorption, S3 predominantly concerned with secretion

Reabsorption
- 15% Mg ++
- 65% Na+, K+, Ca++
- 80% Water, phosphate, HCO$_3^-$
- 100% Glucose **, amino acids
 * Na+ is the only solute actively reabsorbed via basolateral Na+/K+ pump. Remainder passively reabsorbed down concentration, osmotic (water) or electrochemical gradients
 ** Glucose absorption threshold 200mg/dL
Glutamine converted to ammonia throughout PCT

Secretion
Drugs and toxins via active organic ion (cation or anion) pumps
Liver often converts uncharged molecules to charged ones for excretion

Loop of Henle
Two purposes of LoH
Reabsorption of 25-30% Na+
Generation of vertical osmotic gradient
(i) Thin descending limb
Highly water permeable (aquaporin 1 channels)
Negligible solute transport
(ii) Thin ascending limb
Minimal water permeability
Passive NaCl and urea diffusion down concentration gradient
(iii) Medullary thick ascending limb
Water impermeable
25-30% Na+ reabsorption
Passive transport into cell (Na+K+Cl2 co transporter*)
Active transport out (basolateral Na-K ATPase)
*Targeted by loop diuretics
15% Ca++; 60% Mg++ reabsorption
Passive paracellular, driven by electrochemical gradient.
Dissipation of gradient by loop diuretics inhibits Ca++ and Mg++ absorption
10-20% HCO3- reabsorption
Minimal K+ reabsorption
Recycling of K+ in TALH crucial to generate electrochemical gradient
Countercurrent mechanism (300-1200 mosm/l)
NaCl and urea (50% from loop; 50% from collecting duct) make interstitium hypertonic. Water osmotically absorbed from TDLH = more concentrated urine at hairpin = more diffusion of solute = more diffusion of water, etc. Under ADH, urea and water diffuse into interstitium. Water rapidly reabsorbed by vasa recta (also aquaporins in cortical collecting duct) thereby preserving concentration gradient
Production of Tamm-Horsfall mucoprotein

Distal tubule
Divided into DCT and connecting tubule
Principle cells – aldosterone dependent secretion of K+/absorption of Na+
Intercalated cells – hormone-independent absorption of K+
Distal convoluted tubule:
5-10% Na+ absorption
Passive Na+K+Cl2CL2 co-transport, driven by basolateral Na+/K+ ATPase
Co-transporter inhibited by thiazide diuretics
Na+ absorption dependent on luminal [Na+]. – frusemide increases Na+ absorption by DCT (net Na+ loss however)
10-15% Ca+ reabsorption
Passive, independent of Na+ absorption
Driven by basolateral Na+/Ca+ pump (Ca+ out).
Reduced intracellular Na+ 2’ thiazides postulated as a reason for hypocalciuric effect but exact mechanism unknown
Connecting tubule:
Sodium absorption and potassium loss under influence of aldosterone
K+ secretion rate influenced by sodium delivery, and urine flow rate.
Tubular damage impairs potassium secretion (interstitial nephritis etc.)

<table>
<thead>
<tr>
<th></th>
<th>Proximal nephron</th>
<th>LOH</th>
<th>Distal nephron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na+ reabsorption*</td>
<td>67%</td>
<td>25%</td>
<td>8%</td>
</tr>
<tr>
<td>Water reabsorption*</td>
<td>65%</td>
<td>15%</td>
<td>20%</td>
</tr>
<tr>
<td>Ca++ reabsorption</td>
<td>65%</td>
<td>15%</td>
<td>15%</td>
</tr>
<tr>
<td>Mg++ reabsorption</td>
<td>15%</td>
<td>60%</td>
<td>10%</td>
</tr>
<tr>
<td>* maximum values</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Diuretics

Loop diuretics
inhibit Na+K+CL-CL- pump in TALH
Organic acids requiring secretion into PCT for effect. In renal failure more competition for secretion from accumulating toxins. Explains usage of large doses (250mg-1g) for effect in renal failure
Up to 25% increased sodium excretion
Loss of NaCL, water, K, Mg and Ca

Thiazide diuretics
inhibit NaCL co-transport in DCT
5-10% increased sodium excretion
Loss of NaCl, water. Loss of K by increasing sodium load to DCT.

Potassium-sparing
Spironolactone, amiloride, triamterine
5% increased sodium excretion
Spironolactone competes with aldosterone for intracellular mineralocorticoid receptor – inhibits Na-K ATPase
Amiloride/triamterine directly blocks sodium channels

Acid-base balance
pH 7.35 – 7.45
Tightly controlled by buffers
HCO3/CO2 principal buffer system
Lungs excrete CO2 rapidly

Kidney
Reclamation of all filtered HCO3
Excretion of H+ with generation of HCO3
Mechanisms:
glutamine into NH4 and HCO3 in PCT
H-ATPase in DCT excretes H+ and generates HCO3 (H+ buffered by PO4 or as free acid)

Determining appropriateness of compensation
Renal physiology

Boston Rules

pH, pCO₂ & HCO₃

Metabolic Acidosis
- Expected CO₂ = 1.5*HCO₃ + 8 (±/- 2) mmHg (divide by 7.6 for kPa)
- 0.2*HCO₃ + 1 kpa

Respiratory Acidosis
- Acute: 1mmol rise HCO₃ for every 10 mmHg increase in CO2
- Chronic: 4 for 10

Respiratory Alkalosis
- Acute: 2mmol fall in HCO₃ for every 10mmHg fall in CO2
- Chronic 5 for 10 (+/- 2) (max fall HCO₃ to 12-15)

Metabolic Alkalosis
- Expected CO₂ = 0.7 * HCO₃ + 20 (+/- 5)
- Expected CO₂ = 0.6 * BE + 40

In mmHg

(divide by 7.6 for kPa)

Anion gap and Metabolic acidosis

Na + K – Cl – HCO₃

Normal < 15-20*

High > 15-20*

* Depends on lab measurement. Newer ion-specific techniques more accurate. New classification HIGH = 12 or above

Blood electrochemically neutral. ‘Positive’ anion gap because more unmeasured anions than cations. Unmeasured cations magnesium, calcium and gamma globulins. Unmeasured anions sulphates, albumin and phosphate. Where a pure loss of bicarbonate occurs, chloride released to ‘bridge the gap’. In situations where new acids are produced electrochemical neutrality is maintained (salicylate plus H+), thus chloride remains unchanged

High anion gap
- Lactic acidosis
- Ketoacidosis
- Salicylate poisoning

Normal anion gap
- Gut losses (Vomiting, fistula, diarrhoea)
- Renal losses (RTA)
- Chloride ingestion/administration

NB
- Renal tubular acidosis (RTA)
 - Family of diseases characterized by failure of tubular H+ secretion and urinary acidification:
Renal physiology

Type 1
distal failure of H+ secretion
Diagnostic triad
 - Hyperchloraemic metabolic acidosis
 - High urinary pH (>5.5)
 - Low serum HCO3
Associated low sodium, hyperaldosteronism, with low potassium (and low citrate)
Calcium phosphate stone disease – Rx with sodium bicarbonate

Type 2
Proximal failure of bicarbonate reabsorption
Same triad as above, with low sodium and potassium
Citrate normal - no stone disease
Usually children - growth retardation and osteomalacia (Tiny Tim)

Type 3
Actually type 1

Type 4
Impaired distal H+ and K+ secretion. As above but with hyperkalaemia

Metabolic alkalosis
Ingested alkali normally rapidly excreted by kidney. Persistent alkalosis usually due to impairment of HCO3 excretion from kidney, typically due to chloride deficiency. Replacement of Cl usually reverses alkalosis.
Chloride responsive = Gut losses and diuretics (90% - often with paradoxical aciduria due to aldosterone action) - low urinary Cl
Chloride unresponsive = mineralocorticoid excess leading to acid and potassium loss from tubule. Normal urinary Cl (>15 MEq/l)
Homeostasis and renin-angiotensin axis

NB. Control of renin release is rate-limiting step in RAA axis

Vasoconstrictors
- Angiotensin 2
- Vasopressin
- Noradrenaline
- Endothelin
- Platelet activating factor

Vasodilators
- Nitric oxide
- Carbon monoxide
- PGE2/PGI2
- Acetylcholine
- Serotonin
ANP

Angiotensin 2
- Mediates effects via AT1 receptor – efferent constriction>> afferent vasoconstriction

Endothelin
- Highly potent vasoconstrictor released from endothelial cell membrane

ANP
- Atrial natriuretic peptide (Cogan 1990)
- Released in response to increased intravascular volume
- Effects:
 - Increased GFR (dilatation AE and constricts EA)
 - Inhibits juxtaglomerular apparatus (decreased renin, AT2 and aldosterone) = natriuresis
 - Inhibits vasopressin release and effects = diuresis
 - Prevents phase 3 (shutdown) in bilateral UO vs. unilateral UO by maintaining AE dilatation

Glucocorticoids

Nitric oxide
- Synthesised by endothelial NOS (eNOS) and released from endothelium

Carbon monoxide
- Produced as a byproduct of heme metabolism by Heme oxygenase (HO). Exerts renoprotective effect vs ischaemia, especially in renal medulla

Calcium homeostasis

- Major source of cholecalciferol is dermal synthesis from cholesterol
- Other source from diet
- Initial 25a-hydroxylation in liver
- Second 1α-hydroxylation in kidney to form 1,25 dihydroxy-cholecalciferol (calcitriol)
- Acts on gut to increase calcium and phosphate reabsorption. Acts on bone to increased calcium resorption
- PTH – acts on kidney to stimulate calcium reabsorption and phosphate excretion
- Calcium in plasma bound to albumin (46%), complexed with citrate/phosphate (7%) or ionized/free (47%). Acidosis displaces Ca from albumin increasing free ionized calcium. Reverse in alkalosis. May not be identified as serum calcium estimation measures total calcium, not ionized forms.
Erythropoiesis
EPO produced by interstitial cells of kidney in response to low oxygen tension. HIF-1a and HIF-2a stabilised in hypoxic conditions to assemble apparatus for promoting transcription of EPO. Anaemia in renal failure simple secondary to loss of functioning interstitial cells.