Urolithiasis
Lifetime risk of renal stone disease 10-15%
Peak incidence 30-50 years
Females have bimodal distribution – second peak after menopause
Males > females 2:1 [females have higher levels of urinary citrates; serum testosterone a/w higher production of hepatic oxalate]
Whites and asians > blacks and hispanics
More common in hot, dry climates, particularly those populated by fair-skinned races [KSA; UAE; USA; Canada; Japan are top five]
Risk factors intrinsic and extrinsic
Intrinsic gender, genetic and metabolic (see below)
Extrinsic climate, occupational, fluid intake (<1200 ml/day) and diet:

<table>
<thead>
<tr>
<th>Dietary Factors Influencing Urinary Stone-Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑ Calcium - ↑ Urinary calcium</td>
</tr>
<tr>
<td>↓ Calcium - ↑ Urinary oxalate</td>
</tr>
<tr>
<td>↑ Oxalate - ↑ Urinary oxalate</td>
</tr>
<tr>
<td>↑ Sodium - ↑ Urinary calcium</td>
</tr>
<tr>
<td>↑ Refined sugars - ↑ Urinary calcium</td>
</tr>
<tr>
<td>↓ Fibre - ↑ Urinary calcium</td>
</tr>
<tr>
<td>↑ Fibre - ↓ Urinary volume</td>
</tr>
<tr>
<td>↓ Magnesium - ↓ Urinary magnesium</td>
</tr>
</tbody>
</table>

Water hardness (high calcium carbonate) controversial
Low urinary volume a/w inadequate intake is the single most common cause of stone formation in adults
High animal protein causes high urinary oxalate, high urinary uric acid, low pH and low citrate (buffer used up) and high urinary calcium

Recurrence rate 50% at 10 yrs; 90% at 30 yrs
Risk factors for recurrent stone formation
Early age of onset
Strong family history
Type of stone
Cystine
Calcium hydrogen phosphate (Brushite)
Medical condition
Hyperparathyroidism
Hyperthyroidism
Sarcoidosis
Renal tubular acidosis
Primary hyperoxaluria
Cystinuria
Malabsorption
Crohn’s disease
Jejunoileal bypass
Intestinal resection
Urolithiasis

Drugs
Indinavir and triamterene
Vitamin D and megadose calcium supplementation

Anatomical abnormality
PUJO
Calcyceal diverticulum
Medullary sponge kidney
Horseshoe kidney

Types
(i) Calcium stones (80%)
Calcium oxalate
Calcium oxalate monohydrate*
Calcium oxalate dihydrate
Calcium phosphate
Hydroxyapatite (tricalcium diphosphate)
Brushite* (calcium hydrogen phosphate dihydrate)
(ii) Infection stones (10-15%)
Magnesium ammonium phosphate
Carbonate apatite
(iii) Uric acid stones (5-10%)
Uric acid**
Ammonium urate
Sodium urate
(iv) Other (1%)
Cystine*
Xanthine**
Silica**
Indinavir//Triamterene**

* Cystine, calcium oxalate monohydrate, brushite hardest stones
** Fully radiolucent, unlike cystine (ground-glass)

<table>
<thead>
<tr>
<th>Chemical Type</th>
<th>Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium oxalate monohydrate</td>
<td>Hourglass</td>
</tr>
<tr>
<td>Calcium oxalate dihydrate</td>
<td>Envelope, tetrahedral</td>
</tr>
<tr>
<td>Calcium phosphate-apatite</td>
<td>Amorphous</td>
</tr>
<tr>
<td>Brushite</td>
<td>Needle shaped</td>
</tr>
<tr>
<td>Magnesium ammonium phosphate (struvite)</td>
<td>Rectangular, coffin-lid</td>
</tr>
<tr>
<td>Cystine</td>
<td>Hexagonal</td>
</tr>
<tr>
<td>Uric acid</td>
<td>Amorphous shards, plates</td>
</tr>
</tbody>
</table>

Physicochemistry
Relationship between salt and solute comprises 3 states: undersaturated, supersaturated but stable in solution (metastable), and supersaturated with spontaneous precipitation (unstable)
Concentration product = degree of saturation
Solubility product (Ksp) = concentration of ions in a pure solution at which no more chemical will dissolve (without a change in pH, temp, or composition)
Formation product (Kf) = the concentration product at which crystals actually form NB. For pure solutions Ksp effectively the same as Kf; however in urine the presence of inhibitors allows a degree of metastable super-saturation.

Supersaturation alone produces crystals in static solutions but cannot explain formation in urine. Believed to occur through nucleation, aggregation and retention. Crystal nuclei either form in pure solutions (homogenous) or on existing surfaces (rbc, epithelial cell, debris). Individual crystals too small to grow sufficiently large to obstruct tubules within normal transit time. However if more than one clumps together may be retained in lumen and continue to grow (Free particle theory). Alternatively may attach to damaged tubular surfaces (Fixed particle theory)

Randall’s plaques – subepithelial collection of calcified material at papilla; aetiology unknown. Arise within basement membrane of thin loops of Henle and extend through medullary interstitium to subepithelial location. Almost invariably composed of hydroxyapatite.
Inhibitors

- Citrate: CaOx; CaPh
- Magnesium: Ca Ox
- Pyrophosphate: CaPh
- Glycoproteins:
 - Nephrocalcin: CaOx
 - Tamm-Horsfall protein: CaOx
 - Uropontin (osteopontin): CaOx

NB. All inhibit aggregation, but only nephrocalcin and uropontin inhibit nucleation and growth as well. There are no known urinary inhibitors of uric acid stones.

Promoters

- Polymerised THP
- Matrix substance A

Investigation of stone disease

First stone
- U+E, Calcium, Urate
- Urinary dipstick (nitrites/leucocytes, pH, and cystine)
- pH > 7.5 suggests infection stones; pH < 5.5 uric acid stones
- Dipstick for cystine (sodium nitroprusside + urine = purple discolouration – Brandt’s test)
- Stone analysis if possible
- Extended metabolic analysis not recommended in all patients because:
 ~50% have a further stone at 10yrs
 likelihood of recurrence not predicted by metabolic screening

Recurrent stones – who to investigate?

- Children
- Recurrent stone formers
- Bilateral stones
- Strong family history of stones
- Complex stones
- Stones in solitary kidney
- High likelihood on the basis of medical co-morbidity

Recurrent stones – how to investigate?

- U+E, calcium, urate, venous bicarbonate (?RTA)
- Urine
 - Random pH urine
 - Fasting pH urine
 - Dipstick for nitrites and leucocytes
 - Spot test for cystine
 - 2 x 24 hour urine collections:
 - #1 - HCl (prevents precipitation of calcium salts; prevents oxidation of ascorbate to oxalate)
 - Citrate
 - Oxalate
 - Calcium
 - Creatinine/volume
Calcium stone disease
Account for ~80% stone episodes in UK (~50% calcium oxalate; ~30% calcium phosphate)

Causes
90% idiopathic
10% metabolic abnormality
Hypercalcaemia
Hypercalciuria
Hyperoxaluria
Hyperuricosuria
Hypocitraturia

(i) Hypercalcaemia
Hyperparathyroidism; malignancy, TB, sarcoid (sarcoid granulomas produce 1,25(OH)₂D₃ leading to absorptive hypercalciuria)
Incidence of calcium stone disease in hyperparathyroidism only 1%
Treatment of cause

(ii) Hypercalciuria
Isolated hypercalciuria in ~ 50% patients with CaOx stones
Defined as > 4mg/kg/24 hrs or >7mmol (men) or >6mmol (women); Parks and Coe 1986. Other definition >200mg/day
Classification
Idiopathic (~50%)
Absorptive (from gut)
XS calcium absorption from gut – unknown cause
Increased filtration, reduced renal reabsorption (low PTH), raised phosphate, normocalcaemia, but fasting urinary calcium normal
Type 1 > 200mg/day on high or low ca diet
Type 2 > 200mg/day on high ca diet only

Renal leak
Impaired tubular resorption
Secondary hyperPTH, low phosphate, normocalcaemia, fasting calcium high

Resorptive (from bone)
Typically due to PTH or PTHrP
Hypercalcaemia, low phosphate, fasting urinary calcium high
Rx cause

<table>
<thead>
<tr>
<th></th>
<th>Absorptive</th>
<th>Renal</th>
<th>Resorptive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum calcium</td>
<td>Normal</td>
<td>Normal</td>
<td>Elevated</td>
</tr>
<tr>
<td>Parathyroid function</td>
<td>Suppressed</td>
<td>Stimulated (secondarily)</td>
<td>Stimulated (primarily)</td>
</tr>
<tr>
<td>Fasting urinary calcium</td>
<td>Normal</td>
<td>Elevated</td>
<td>Elevated</td>
</tr>
<tr>
<td>Intestinal calcium absorption</td>
<td>Elevated (primarily)</td>
<td>Elevated (secondarily)</td>
<td>Elevated (secondarily)</td>
</tr>
</tbody>
</table>

Diagnosis
Resorptive hypercalciuria usually obvious: differentiation between idiopathic, renal and absorptive more difficult
Traditionally 'fast and load' calcium test – absorptive has normal fasting urinary calcium cf. resorptive/idiopathic
Fast and calcium load rarely performed as most patients get thiazides anyway

Management
a) **High fluid intake**
b) **Calcium restriction**
 - Low ca diets a/w increased stone formation (due to increased oxalate absorption) Curhan 1993; 1997
 - Studies did not separate patients with absorptive hypercalciuria – moderate restriction may have a role in these patients
c) **Sodium cellulose phosphate**
 - Binds divalent cations and reduces urinary calcium, even in type 1 hypercalciuria
 - No evidence reduces recurrence; a/w severe GI side effects, hyperoxaluria, hypomagnesaemia
 - Largely historical due to side effect profile
d) **Thiazide diuretics**
 - Prevent sodium for calcium exchange in distal nephron.
 - Used for both renal and absorptive
 - Hydrochlorothiazide 25mg bd usual
 - **Absorptive**
 - Treats hypercalcuria, not cause
 - Previous studies have shown limited long-term efficacy (Preminger 1987). Initial increase in BMD indicating skeletal accretion, but after a variable period, bone stores overwhelmed and leak occurs again. Thiazide holiday recommended.
 - **Renal**
 - Ideal Rx as corrects underlying abnormality
 - No worries re. loss of effectiveness
 - Certainly reduces urinary calcium, but less impressive vs. recurrence (15% rec. vs. 27%)
controls) and only if taken for more than 2 yrs
(?stone clinic effect)

Side effects problematic in 30%
- Lethargy
- Hypokalaemia
- Hypocitraturia
- supplement with KCit
- Impotence
- Reduced libido
- Rarely pancreatitis

e) Orthophosphate
 - Uro-Phos-K
 - Slow release neutral potassium phosphate, binds intestinal calcium and inhibits activated vitamin D
 - Reduces urinary calcium and increases citrate but no evidence that reduces stone recurrence rates.
 - No publications since initial reports 1998

(iii) Hyperoxaluria
- Dietary oxalic acid predominantly absorbed in colon
- Oxalic acid completely filtered, secreted but not absorbed
- Defined as $> 40\, \text{mg/day}$ oxalate in urine
- $< 80\, \text{mg/day} =$ dietary hyperoxaluria; $> 80\, \text{mg/day}$ enteric or primary hyperoxaluria

Causes:
- Dietary hyperoxaluria
 - Reduce intake of rhubarb, tea, chocolate, nuts, spinach and strawberries
 - Eliminate megadoses of vitamin C
- Enteric hyperoxaluria
 - Most common cause of hyperoxaluria
 - Malabsorption syndromes (Crohn’s etc.)
 - Bile salts increase permeability of intestinal mucosa to oxalate and calcium soap formation results in increased free gut oxalate
 - ? role for oxalobacter formigenes
- Primary hyperoxaluria
 - Rare autosomal recessive disease
 - Mutated AGT (see appendix) leads to very elevated levels of urinary oxalate ($>100\, \text{mg/day}$), causing CaOx stone disease, nephrocalcinosis and renal impairment (liver and kidney transplant required)

Management
- High fluid intake
- Low oxalate diet
 - [High calcium/magnesium diet proposed to chelate bile salts but hypercalciuria and diarrhoea problematic]

(iv) Hyperuricosuria
- Urinary uric acid $> 600\, \text{mg/day}$
- Only abnormality in ~10% calcium oxalate stone formers
Causes include overingestion, xs production (gout, myeloproliferative disorders, and drugs (see uric acid stones)

pH <5.5 results in uric acid crystal precipitation, which act as nidus for CaOx crystal nucleation

Uric acid crystals also bind urinary inhibitors (GAGs)

Management

High fluid intake

Allopurinol (xanthine oxidase inhibitor) 300 mg/day irrespective of serum urate

Potassium citrate

(v) **Hypocitraturia**

Definition urinary citrate < 320mg/day

Implicated in up to 50% stone formers

Citrate reduces stone formation in 3 ways

- Reduces free urinary calcium by complexing Ca+
- Directly prevents spontaneous CaOx nucleation
- Prevents aggregation of CaOx crystals

Typically reflects acid base balance; in metabolic acidosis tubular c citrate reabsorption increased

Common disorders a/w hypocitraturia include distal renal tubular acidosis (see appendix), chronic diarrhoea, ACEIs and thiazides (?intracellular acidosis)

Management

High fluid intake

Potassium citrate

Infection stones

Common

Account for 10-15% of all stones

Females > males 2:1

Composed predominantly of magnesium ammonium phosphate hexahydrate (MgNH₄PO₄ • 6H₂O) with a variable component of carbonate apatite (Ca₁₀[PO₄]₆ • CO₃).

Caused by production of urease by bacteria (most commonly Proteus (mirabilis), Pseudomonas and Klebsiella and Staphylococcus species)

Urease producing bacteria act on urea to produce ammonia and carbon dioxide. Ammonia dissociates into ammonium ions and hydroxide (high pH)

\[
\begin{align*}
8\text{NH}_2\text{CO} + \text{H}_2\text{O} & \rightarrow 2\text{NH}_3 + \text{CO}_2 \\
\text{NH}_3 + \text{H}_2\text{O} & \rightarrow (\text{OH}^-) + (\text{NH}_4^+)
\end{align*}
\]

Ammonium ions then complex with magnesium and phosphate ions to form struvite – only occurs in alkaline environments pH > 7

Aetiology

- Congenital abnormality
- Impaired bladder emptying (neurogenic bladder)
- Urinary diversion

Medical management

Limited

- Antibiotics for acute infection, pre-operatively and following successful stone elimination in a patient with residual fragments
Hemacidrin for residual fragments a/w complications unless sterile urine
Acetohydroxamic acid (urease inhibitor 250mg tds) prevents new stones and reduced growth of pre-existing stones (Griffith 1991) but a/w low grade DIC and thrombosis and cessation rate up to 70%

Uric acid and urate stones
5-10% of all renal stones
More common in middle east ? genetic susceptibility
Dalmations, great apes and humans affected due to lack of uricase (converts uric acid to soluble allantoin for excretion by kidney)
Uric acid solubility very pH dependent; below pH <5.5 significant reduction in uric acid solubility
Requirements for uric acid calculi formation:
- Low urinary pH
- Low urine volume
- High relative uric acid concentration

![Uric acid nephrolithiasis diagram]

Aetiology

Low urinary pH
- Most important factor, as most patients with uric acid stones have normal levels of urinary uric acid, but persistently low pH
- Gouty diathesis*, diarrhoea, gout and high animal protein intake
 - *cause unknown but more common in patients with insulin resistance, possibly due to impaired urinary ammonia production

Low urinary volume
- Diarrhoea, ileostomies, poor oral intake, xs sweating

Hyperuricosuria
- With hyperuricaemia (3):
 - primary gout (aetiology unknown);
 - myeloproliferative conditions
 - Lesch-Nyhan syndrome
- Without hyperuricaemia (2)
 - drugs (salicylates, thiazides)
 - dietary (organ meats and sardines)

Investigation
- Urinary pH < 5.5
- Elevated serum urate
Urolithiasis

24 hour urine collection (sodium azide) > 600mg/day
Negatively birefringent crystals on polarised light
Radiolucent calculus on plain imaging (also sodium urate, ammonium urate, xanthine, matrix, indinavir and triamterene)
Identifiable calculus on CT (350-400 Hounsfield units)

Management

High fluid intake
Dissolution therapy (chemolysis)
- Sodium bicarbonate 500mg qds
- Potassium citrate 20mEq tds
- Occasionally intravenous 1/6 molar lactate or sodium bicarbonate solution used for patients with nausea and vomiting
- Rarely intravesical or intrarenal sodium bicarbonate for direct chemolysis

Prevention
- Allopurinol 300mg/day for all patients with hyperuricosuria (with or without hyperuricaemia) – not indicated in patients with merely low urinary pH or low volume
- Allopurinol (xanthine oxidase inhibitor): side effects rare but include, rash, hypersensitivity (Stephens Johnson syndrome), hepatitis and renal failure

Ammonium urate stones
Rare in developed countries; common cause of endemic bladder stones in developing world
Typically form constituent of other stones but occasionally predominant component
A/w conditions of salt and water loss and low urinary pH; inflammatory bowel disease, laxative abuse and metabolic syndrome
Rx cause; alkalise urine

Lesch Nyhan syndrome
Rare
Males only
X-linked hereditary defect of hypoxanthine-guanine phosphoribosyl transferase (HPRT)
Hyperuricaemia and hyperuricosuria
Choreoathetosis, mental retardation, self-mutilation, gouty arthritis and renal stones

Cystine stones
Relatively uncommon; accounts for 1-2% of renal stones (10% kids)
Autosomal recessive inheritance of defect in tubular resorption of ‘COLA’ amino acids (C=Cystine, O=Ornithine, L=Lysine, A=Arginine)
Mutations affect heteromeric amino acid transporters on chromosomes 2 and 19. Ornithine, lysine and arginine all highly soluble in urine; therefore only cystine a problem. Cystine more soluble at higher urinary pH and at higher ionic strengths (more dissolved salts)

Heterozygotes 1:200; Homozygotes 1:20,000, but some heterozygotes produce stones. Therefore incidence of symptomatic cystine stones 1:10,000

Median age of stone formation 20-30 years

Cystinuria; normal individuals excrete <100mg/day; heterozygote carriers excrete 150-300mg/day; homozygote affected individuals typically excrete >400mg/day (solubility limit ~250-300mg/day)

Investigation

Sodium nitroprusside spot test (Brandt’s test)
 Cystine + sodium cyanide = cysteine (pink)
 Cysteine + nitroprusside = purple discoloration
 Positive when urinary cystine > 75mg/L
 False positives
 Homocystinuria
 Sulpha drugs
 N-acetylcysteine

Ground glass appearance on plain film (disulphide bonds)

Medical management

High fluid intake (to produce 2.5 to 3 litres/day)
Limit sodium intake
Avoid red meat, fish and poultry (high levels of methionine – precursor of cystine)
Urinary alkalisation (aim for pH 6.5-7.0 to improve solubility)

Cystine binders (disulphide bond to soluble drug cf. insoluble cystine)
 (i) D-penicillamine (250mg/day: side effects nephrotic syndrome, dermatitis and pancytopenia; 70% cessation rate; rarely used)
 (ii) Alpha mercaptopropionylglycine (aka Thiola; 100mg bd, titrated to urinary cystine < 250mg/day: better tolerated than penicillamine, but side effects asthenia, GI upset, rash; cessation rate 30%)
 (iii) Captopril (no reported clinical trials – not currently recommended)

Other stones

a) Matrix stones
 Mucoproteins and mucopolysaccharide
 Radiolucent
 Extremely rare

b) Bladder calculi
 Migrant (from upper tracts)
 Primary endemic
 Children with low phosphate, cereal-based diets (low animal protein): high urinary ammonium and oxalate – typically ammonium urate +/- calcium oxalate
 Secondary
 BOO
UTI
Foreign body
c) Drug associated stones
 Stones made of drug
 Indinavir HIV protease inhibitor
 Triamterene K sparing diuretic
 Guaifenesin
 Ephedrine
 Ciprofloxacin
 Stones increasing risk clacium stones
 Bumetanide
 Frusemide
 Acetozolamide
Appendix

Chemical formulae

\[
\text{Ca}^2+ \left[\begin{array}{c} \text{O} \\ \text{C} \\ \text{C} \end{array} \right]^{2-}
\]

Calcium oxalate monohydrate (Whewellite) = \(C_2H_2CaO_5 \)
Calcium oxalate dihydrate (Weddellite) = \(C_2H_4CaO_6 \)
Tricalcium diphosphatate (Hydroxyapatite) = \(Ca_3O_8P_2 \)
Calcium hydrogen phosphate dihydrate (Brushite) = \(CaH_2O_6P \)
Magnesium ammonium phosphate (Struvite) = \(H_4MgNO_6P \)
Carbonate apatite (Dahlite) = \(Ca_5(PO_4,CO_3)_3F \)

Uric acid (above) = \(C_5H_4N_4O_3 \)
Ammonium urate = \(C_5H_7N_5O_3 \)
Sodium urate = \(C_5H_3N_4NaO_3 \)

Renal physiology

<table>
<thead>
<tr>
<th></th>
<th>Proximal nephron</th>
<th>LOH</th>
<th>Distal nephron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na(^{+}) reabsorption(^*)</td>
<td>67%</td>
<td>25%</td>
<td>8%</td>
</tr>
<tr>
<td>Water reabsorption(^*)</td>
<td>65%</td>
<td>15%</td>
<td>20%</td>
</tr>
<tr>
<td>Ca(^{2+}) reabsorption</td>
<td>65%</td>
<td>15%</td>
<td>15%</td>
</tr>
<tr>
<td>Mg(^{2+}) reabsorption</td>
<td>15%</td>
<td>60%</td>
<td>10%</td>
</tr>
</tbody>
</table>

\(^*\) maximum values
Calcium metabolism
40% dietary calcium absorbed; 90% small intestine, 10% colon
Only ionised non-complexed calcium absorbed, usually transcellular
When dietary calcium low, vitamin-D dependent channels increase fractional absorption

Vitamin D metabolism

Oxalate metabolism
Only 10-15% of ingested oxalate absorbed (50% small bowel; 50% colon)
May be significantly reduced in patients with enteric colonisation with *oxalobacter formigenes*. ? therapeutic benefit
Most oxalate appearing in urine from hepatic metabolism (50% glycine breakdown; 50% ascorbic acid breakdown)
Primary hyperoxaluria (type 1) caused by a deficiency of the hepatic enzyme alanine-glyoxylate aminotransferase (AGT). Results in failure of conversion of glyoxylate to glycine, leading to increased production of oxalic, glycolic and glycoxylic acids (see below).

Purine metabolism

HPRT = hypoxanthine-guanine phosphoribosyl transferase. Deficiency of HPRT seen in Lesch-Nyhan syndrome
Allopurinol – structural isomer of hypoxanthine; acts as xanthine oxidase inhibitor. High levels may be a/w formation of xanthine stones (hypoxanthine more soluble than xanthine)
Renal tubular acidosis
Family of diseases characterized by failure of tubular H+ secretion and urinary acidification:

Type 1
Distal failure of H+ secretion
Diagnostic triad
- Hyperchloreaemic metabolic acidosis
- High urinary pH (>5.5)
- Low serum HCO3
80% female; 70% form stones, typically calcium phosphate
Associated low sodium, hyperaldosteronism, low potassium, Low citrate predisposes to calcium stone disease (especially calcium phosphate) – Rx with potassium citrate

Type 2
Proximal failure of bicarbonate reabsorption
Same triad as above, with low sodium and potassium
Citrate normal - no stone disease
Usually children - growth retardation and osteomalacia (Tiny Tim)

Type 3
Actually type 1

Type 4
Impaired distal H+ and K+ secretion. As above but with hyperkalaemia – therefore cannot treat with potassium citrate

Many patients with milder forms of disease not particularly acidotic. Single best test is ammonium chloride (100mg/Kg) urinary acidification test. Ammonium chloride dissociates into ammonium ions and H+ ions – requires buffering by kidney. A urinary pH of <5.5 indicative of a failure of urinary acidification.
Urolithiasis

Primary defect
↓ Net H⁺ secretion

↑ Renal sodium excretion

↑ Aldosterone production

↑ Potassium excretion

Hyperkalemia

Muscle weakness
Paralysis

Hyperchloremia

Hypochloremia

Hypocalcemia

Secondary hyperparathyroidism

Hypophosphatemia

Osteomalacia
Growth retardation

↑ Urinary pH

Hyperchloremia

Hypercalcemia

Hypophosphaturia

↑ 1,25 (OH)₂D₃ (Active vitamin D)

Intestinal calcium absorption

Nephrocalcinosis
Nephrolithiasis

↑ HCO₃⁻ Wasting

↓ H⁺ Retention

Acidosis