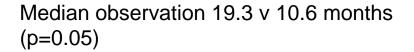
Trials that will change my practice

(or provide some evidence to justify current aspects of it)

Dr Simon Crabb

Senior Lecturer and Honorary Consultant in Medical Oncology Cancer Sciences Unit, University of Southampton Faculty of Medicine

Questions in my practice

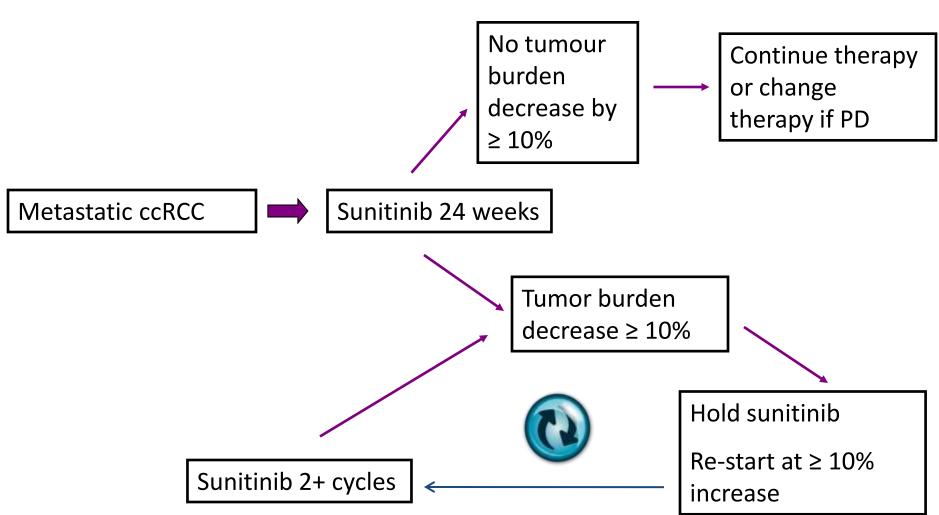

Do we need to start targeted therapy immediately? Can we ever pause therapy once it has started? (Do we need to do a nephrectomy?) What is the best first line therapy? Can we combine current systemic therapies? How should we sequence them? How can we utilise toxicity as a guide to efficacy? Is immunotherapy the next big thing (again)? How should we treat non clear cell mRCC? Will we need to start using adjuvant therapy?

Delayed systemic therapy?

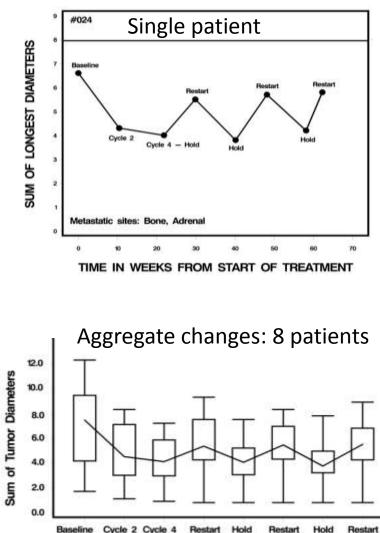
- Low-volume, slow-growing, asymptomatic disease is often observed initially
- Little evidence to support this but widely accepted
- How to select when to start treatment?
 - Increased pace of disease?
 - New metastatic sites?
 - Symptoms from disease?
 - Clinician/patient anxiety?
- Prospective single arm trial
 - n=49, median age 67
 - 94% ECOG 0, 96% clear cell histology
 - 92% prior nephrectomy
 - 74% lung, 28% nodes, 17% renal, 17% adrenal, 11% bone, 7% liver

Results (n=49)

- Median baseline tumour burden 3.2 cm (0.8 - 19.6)
- Median change 0.09 cm/month (-0.51 3.6)
- Observation time
 - Median 14.1 months (95% C.I. 9.2-28.5)
 - 3 patients > 4 years
- Location/number metastatic sites did not impact length of observation (numbers small)
- Anxiety/depression were not prevalent at baseline and did not worsen (trial possibly selecting for this?)



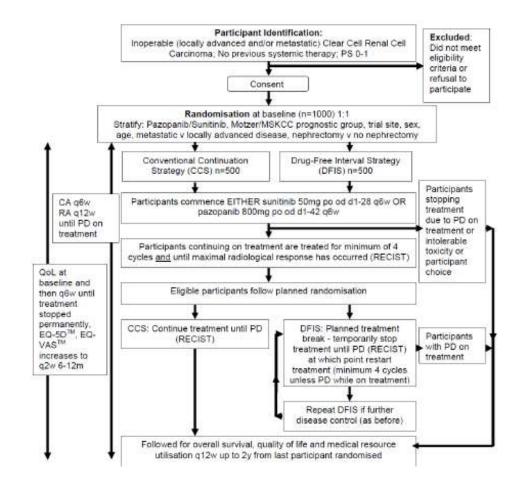
Intermittent Therapy?


- A minority of patients are treated for many years with targeted drugs
- Standard of care is treatment to progression
- Potential benefits to an intermittent treatment strategy
 - Toxicity is generally modest but common
 - Hypothetically emergence of resistant clones might be reduced by intermittent therapy
 - Intermittent therapy is cheaper in terms of the drugs and might alter cost effectiveness

Study Schema

Results

- n=37
- 17 not eligible for intermittent therapy
 - PD (n=13)
 - Toxicity (n=1)
 - Patient choice (n=3)
- 20 proceeded to intermittent therapy
 - 16 (80%) had ≥ 10% increase off sunitinib
 - 4 (20%) did not have ≥ 10%
 increase off sunitinib

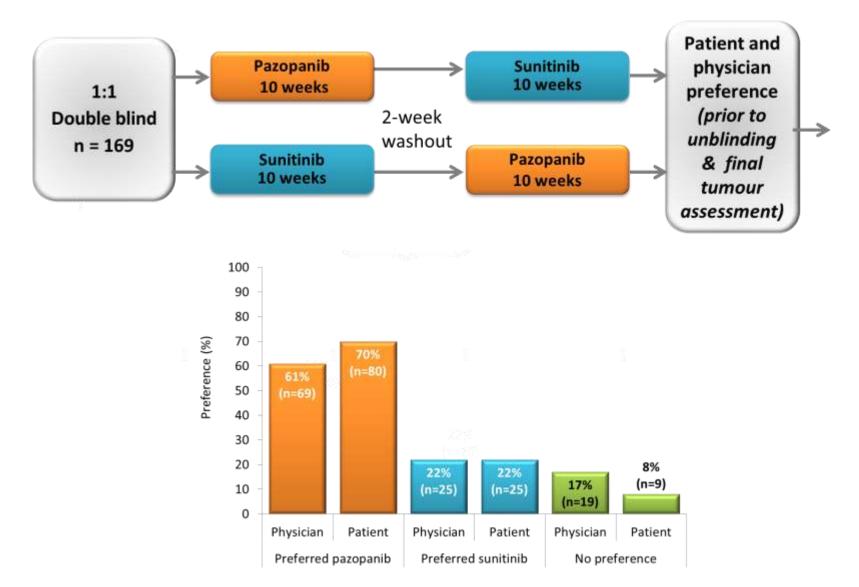

Period 1

Period 2

Period 3

STAR Trial

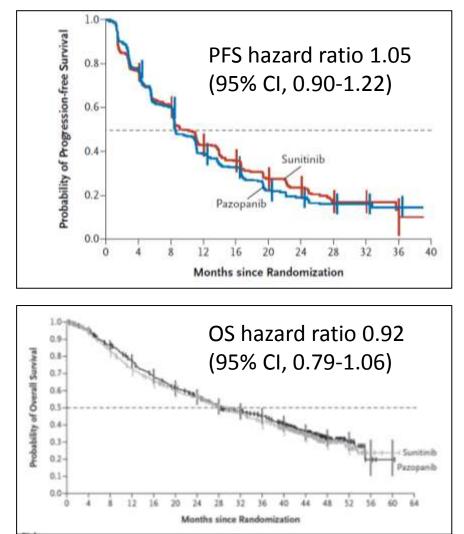
- Intermittent versus continuous therapy.
- Phase II feasibility complete
- Multiple sites
- Easy to recruit
- CI: Janet Brown, Leeds



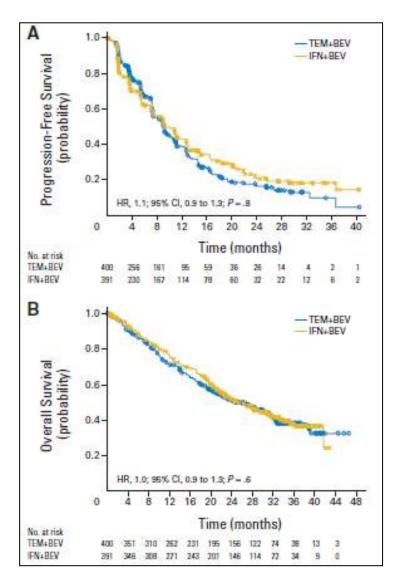
What is the best first line therapy?

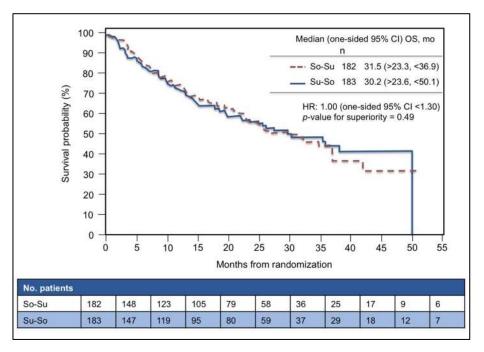
Drug	Comparators	PFS	OS
Sunitinib	IFNα	11 v 5 months HR 0.42 p < 0.001	26.4 v 21.8 months HR 0.82 p = 0.051
Pazopanib	Placebo	9.2 v 4.2 months HR 0.46 p < 0.0001	22.9 v 20.5 months HR 0.91 p = 0.224
Bevacizumab/IFNα	IFNα	8.5 v 5.2 months HR 0.71 p < 0.0001	18.3 v 17.4 months HR 0.86 p = 0.097
Temsirolimus	IFNα Both	3.8 v 1.9 v 3.7 months P<0.001 (T v I)	10.9 v 7.3 v 8.4 months HR 0.73 (T v I) p = 0.008

Sternberg et al, J Clin Oncol, 2010; Sternberg et al, Eur J Cancer, 2013; Motzer et al, J Clin Oncol, 2009; Motzer et al, N Engl J Med, 2007; Rini et al, J Clin Oncol, 2008; Hudes et al, N Engl J Med, 2007; Rini et al, J Clin Oncol, 2010

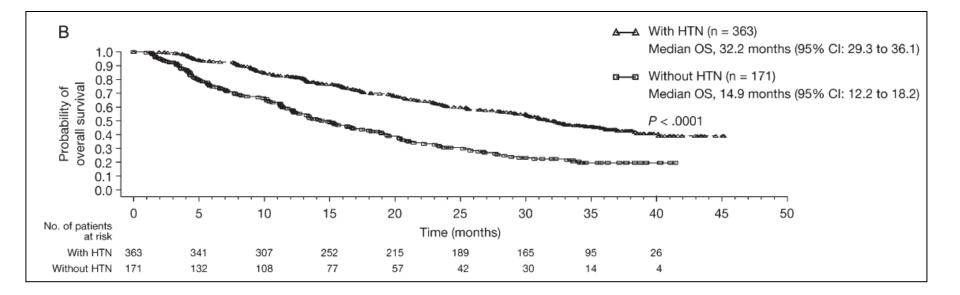

PISCES study

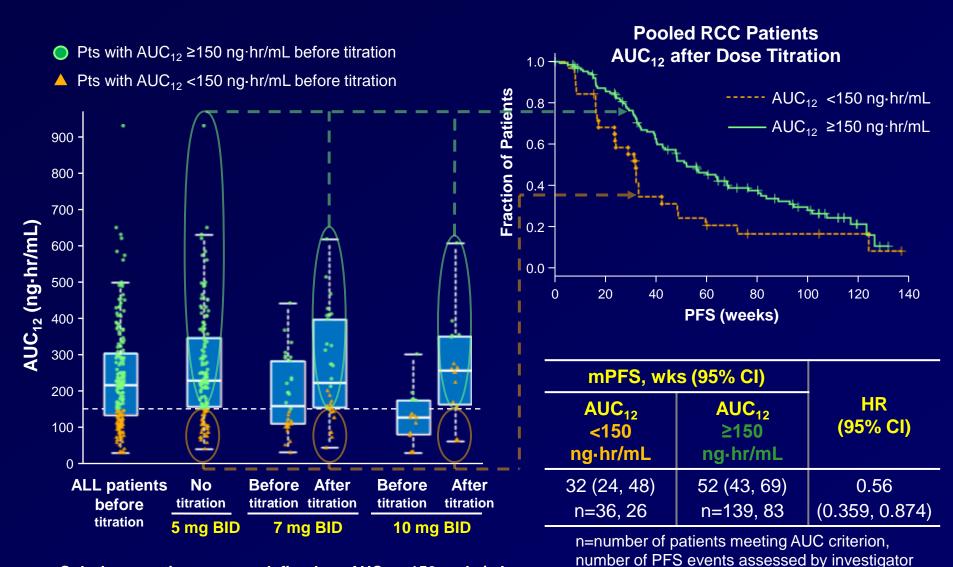
Escudier et al, J Clin Oncol, 2014


COMPARZ trial


- n = 1100
- Non-inferior
- Higher incidence with sunitinib of:
 - Fatigue (63% v 55%)
 - Hand–foot syndrome (50% v 29%)
 - Thrombocytopenia (78% v 41%)
- Higher incidence with pazopanib of
 - ALT rise (60% v 43%)
- QOL changes favoured pazopanib

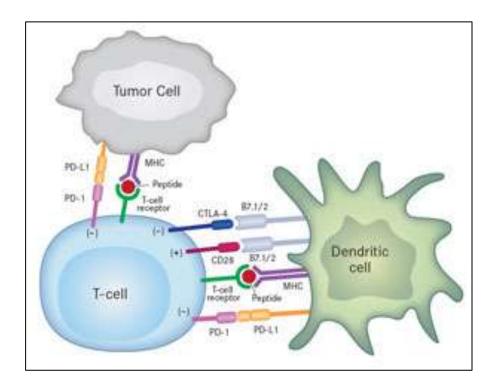
Trials that will not change practice...


(amongst various examples of combinations and sequencing)



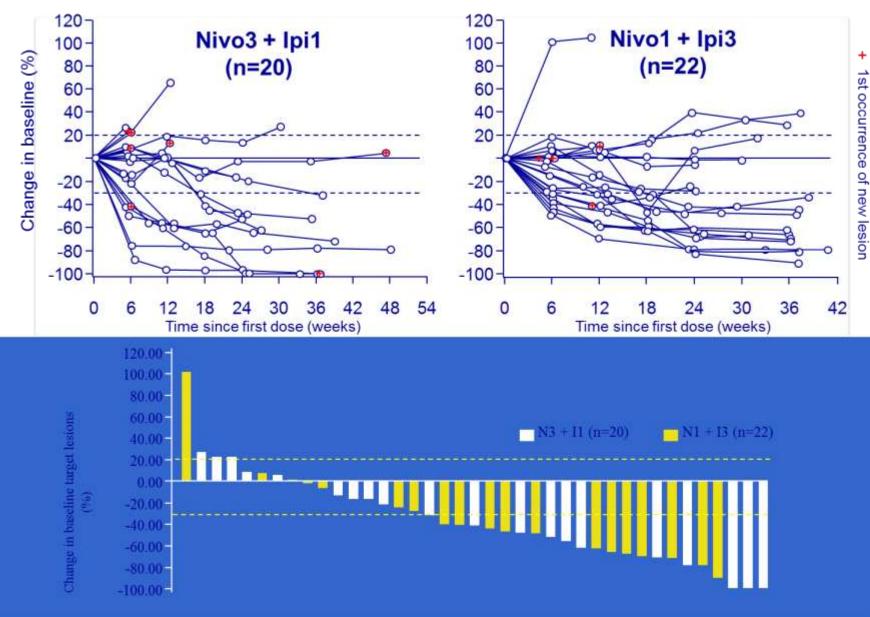
Michel et al, GU ASCO 2014, abstr 393; Rini et al, J Clin Oncol, 2013

Toxicity, efficacy and dose?

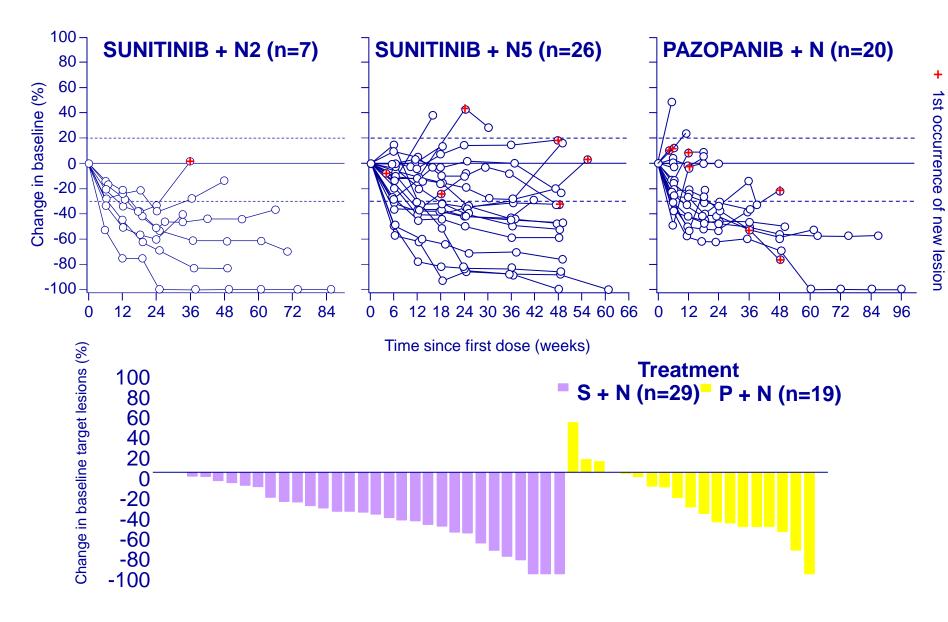

PFS vs AUC in Phase II RCC Patients

Sub-therapeutic exposure defined as AUC₁₂ <150 ng·hr/mL

Immune therapy in metastatic RCC


- Established with II-2 (5-10% durable CR rate in selected patients)
- Development of immune checkpoint inhibitors is a significant area of current drug development in cancer

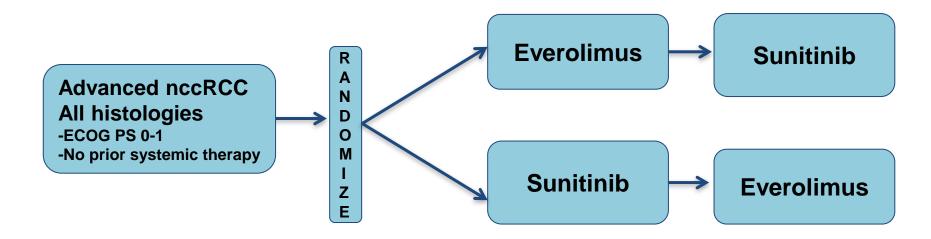
Single agent nivolumab in RCC


		# 5009 MOTZER		#5012 CHOUEIRI				
Design	Randomize	d, dose-ranging	phase II (N=168)	Biomarker-based randomized clinical trial (N=91) (Baseline and on-therapy fresh tumor biopsies)				
Dose IV Q3W	0.3mg/kg n =60	2 mg/kg n=54	10 mg/kg n=54	0.3mg/kg n =22 2 2 mg/kg n=22 2		10 mg/kg n=23	10 mg/kg n=24 (naïve)	
Prior Tx		$70\% \ge 2$ prior then No treatment-naïv	-	74% (1-3) prior therapies 24 (16%) treatment-naïve pts				
ORR (%)	20%	22%	20%	9% 23%		22%	13%	
mPFS (m) 1° endpoint	2.7	4.0	4.2	PFS at 24 weeks: 36%				
mOS (m)	18.2	25.5	24.7	Not Reported				
G3/4 TOX	5%	17%	13%	18%				
Biomarker		None reporte	ed	 Increased T-cell tumor infiltrates after nivolumab Increased serum chemokines post-nivolumab Numerically higher (22% vs. 8%) ORR in PD-L1 (+) pts 				
Perspective	•Axitin •mPFS •Median OS	S is not impress ib/everolimus: ~5 :an appropriate e is impressive: RECORD-1: ~20/	m (post TKI) ndpoint ?	What is the role of PD/PD-L1 inh in PD- L1 (+) tumors?				

Combination Nivolumab + Ipilimumab

Hammers et al, ASCO Meeting 2014, abstr 4504

Combination Nivolumab + Sunitinib

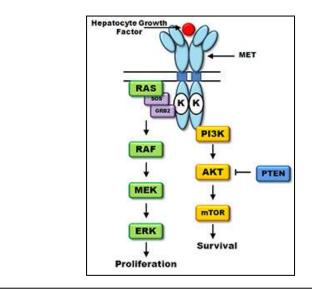

Amin et al, ASCO Meeting 2014, abstr 5010

Non clear cell mRCC

- Generally lower response rates than ccRCC
- Some have used mTOR inhibitors on the basis of subset data

Subgroup	No. of Patients	Hazard	Ratio (9	5% CI)	
Age			1		
<65 yr	287	13 1 1 1 1	- 1		
≥65 yr	129		-		
Sex					
Male	287		-		
Female	129	24	-	- 224	
Initial diagnosis to randomizatio	n'				
<1 yr	338		-!		
≥l yr	78		_		
Kamofsky performance score					
\$70	340		-1		
>70	75	10	-		- 63
Prior nephrectomy					
Yes	278				
No	138		-		
Tumor histologic type			i.		
Clear-cell	339		+		
Other	73		- 1		
Hernoglobin level					
<1× lower limit of normal	340		-1		
≥1× lower limit of normal	76				
Lactate dehydrogenase level			1		
\$1.5x upper limit of normal	315	8	+	8	
>1.5× upper limit of normal	84	·	1		
Corrected serum calcium level			1		
≤10 mg/dl	276		-		
>10 mg/dl	126		-		
Geographic area			1		
United States	122			8	
Western Europe, Canada, or Australia	87	3		75	
Asia-Pacific, Eastern Europe,	207		_		
Africa, or South America			1		
	0.0	0.5	1.0	1.5	2
		Temsirolimu Better	IS	Interferon Better	

Everolimus v sunitinib in metastatic non-ccRCC



	Everolimus, n=35	Sunitinib, n=33	P-value
ORR 1 st line	2.8%	6%	
Nb of pts receiving 2 nd line	20	24	
mOS (months) -mOS (non-sarcomatoid), n=49	14.9 10.5	16.2 31.6	0.18 0.07

Tannir, ASCO meeting 2014, abstr 4505

Biological rationale for cMET inhibition in papillary mRCC

- Papillary RCC associated with activating MET gene mutations
- Foretinib: multikinase inhibitor targeting MET, VEGF, RON, AXL, TIE-2
- ORR 13.5%, median PFS
 9.3 months
- Germline MET mutation predictive of response
 - 5/10 v 5/57

Choueiri, J Clin Oncol 2012

Adjuvant trials

Trial (sponsor)	Randomization	Duration of therapy (years)	N	Start date	End date ^a	Primary endpoint	Clear cell required?	Details
ASSURE (ECOG)	Sunitinib vs. sorafenib vs. placebo	1	1,943	April 2006	September 2010	DFS	No	 Eligibility: pT1bN0M0 (grades 3–4) or pT2-4N1-3M0 RCC Histology: Any Cardiac safety substudy reported
ATLAS (Pfizer)	Axitinib vs. placebo	3	592	April 2012	June 2017	DFS	Yes	 Eligibility: pT2-4N0M0 or pTxN1M0 RCC
EVEREST (SWOG)	Everolimus vs. placebo	1	1,218	April 2011	October 2021	DFS	No	 Eligibility: pT1bN0M0 (grades 3–4) or pT2-4N1-3M0 RCC Histology: Any Accrual ~50% complete
PROTECT (GSK)	Pazopanib vs. placebo	1	1,500	November 2010	April 2016	DFS	Yes	 Eligibility: pT2N0M0 (grades 3–4) or pT3-4N0M0 or pTxN1M0 RCC
SORCE (MRC)	Sorafenib vs. placebo	3	1,420	June 2007	December 2012	DFS	No	 Eligibility: Intermediate- or high-risk RCC (Leibovich score, 3–11)
S-TRAC (Pfizer)	Sunitinib vs. placebo	1	720	July 2007	November 2015	DFS	Yes	 Eligibility: High-risk RCC (modified UISS criteria) pT2N0M0 (grades 3–4) or pT3-4N0M0 or pTxN1M0 RCC

Conclusions

- A subset of mRCC can probably be safely observed for a period before systemic therapy randomised data realistic???
- Treatment breaks seem safe but we don't know if this is optimal so support the STAR trial
- Combining established drugs and sequencing trials are largely negative
- We have probably reached a plateau with current VEGF and mTOR targeted drugs and 'me too' agents seem to have brought rather little to the table
- Further significant advance will probably require:
 - New therapeutic targets Perhaps this is immunotherapy, large trials awaited
 - Predictive biomarkers Lots of ongoing work, little ready for prime time
- Non clear cell mRCC remains a significant challenge
- Adjuvant trials will start to report soon and may change practice