Renal Physiology

<u>Basic</u> 2 kidn 10-11	<u>s</u> ieys cm long	
150g	each	
1 milli	on nephrons/kidney	
25% c	of cardiac output:	RBF ~ 625ml/min/kidney
20% f	iltered:	GFR ~ 125 ml/min (range 80-140ml/min)
Funct	ions:	
	1. Excretion	
	a. Me	tabolic endproducts
		Acid (organic or inorganic)
		Nitrogenous waste (urea)
		Nucleic acid turnover (uric acid/xanthine)
	b. Dru	ugs/Toxins
		Filtration or secretion
		Often same disposal as acids
	2. Maintenar	nce of fluid volume
	Sodiu	im and water regulation via RAA and in response to
	ADH	
	3. Maintenar	nce of body fluid composition
	Na+,	K+, Cl-, pH, Mg+, Ca+, phosphate, water
	4. Hormonal	regulation
	Renir	
	Eryth	ropoetin
	1,25 (dihydrocholecalciferol
Glome Passiv Deterr	erular filtration ve ultrafiltration of pl minants of GFR:	asma across semipermeable glomerular membrane
	Glomerular permea	ability (Lp)
	Glomerular surface	area (S)
	Pushing pressure (difference in hydrostatic pressure)
	Pulling pressure (d	ifference in oncotic pressure)
	GFR = LpS - (Δhyd	lrostatic pressure - Δoncotic pressure)
(i) Glo	merular permeability	<i></i>
	Fenestrated negative with microvilli	, vely-charged (anionic) capillary endothelial cell layer

Size and charge selective

Free filtration of water and neutral molecules less than 26 Angstroms Some filtration of neutral/positively-charged molecules up to 60A No filtration of highly-negative molecules (albumin) or >60A

(ii) Transglomerular hydraulic pressure

Autoregulation* of afferent and efferent arterioles acts to maintain glomerular blood pressure at a constant 50-60mmHg Proximal tubular hydrostatic pressure effectively zero, except when downstream obstruction (iii) Oncotic pressure

Constant at ~25mmHg

In normal conditions plasma proteins not filtered so Bowman's space oncotic pressure zero

Autoregulation of glomerular filtration

GFR preserved across wide range of blood pressure (80 – 180mmHg) due to 2 complimentary mechanisms:

(i) Afferent arteriolar myogenic stretch

Laplace's law governs that a rise in pressure/increase in radius (volume) increases wall tension Myogenic tone of afferent arteriole 'pushes' back; conversely

relaxes when pressure/radius, thereby regulating flow into glomerulus

(ii) Tubuloglomerular feedback (juxtaglomerular apparatus)

Macula densa cells in distal tubule monitor flow Increased pressure – increased GFP – increased tubular flow Leads to production of substances (endothelin, TXA2, AT2) from granular cells of juxtaglomerular apparatus, leading to constriction of afferent arteriole

NB. Granular cells of JGA secrete renin in predominantly in response to low tubular chloride rather than sodium. Sodium follows chloride, leading to a rise in ECF volume and blood pressure (see appendix)

Assesment of glomerular filtration

GFR cannot be measured directly – needs to be estimated. Methods comprise Plasma creatinine and other markers, mathematical formulae, and plasma clearance

(i) Plasma markers

Creatinine

Constant production in individual

10% secreted – therefore typically overestimates GFR Patient to patient variation based on age, sex, muscle mass and race. Low production (little old ladies) overestimates GFR; high intake (bodybuilders) underestimates GFR

Mathematical formula used to 'normalise values':

(i) Cockcroft & Gault (individuals with normal function)

$$CrCl = \frac{\{[(140 - age) \times (IBW \text{ in } kg)]}{[PCr(mg/dL) \times 72]\}} \times 0.85 \text{ (women)}$$

Does not describe a linear relationship – see graph overleaf. Also calculates creatinine clearance, not glomerular filtration rate

 (ii) MDRD (individuals with impaired renal function) Modification of diet in renal disease (1999). Derived as a screening tool to identify patients with renal disease $GFR = 186 \times (PCr)^{-1.154} \times (age)^{-0.203}$ $\times (0.742 \text{ if female}) \times (1.210 \text{ if African American})$

Calculates GFR not creatinine clearance Underestimates eGFR at high values. Therefore a number of hospitals give eGFR of > 60ml/min rather than a figure for high filtration rates Requires fudge factor for blacks – not calculated automatically New formula CKD EPI set to supercede MDRD as

better predictor across range of GFRs

Steady *reciprocal* relationship between GFR (or creatinine clearance) and serum creatinine (see below)

NB. Increased production (rhabdomyolysis, supplements) underestimates GFR

Reduced production (cirrhosis, reduced muscle mass, elderly) overestimates GFR

Urea

Freely filtered but up to 50% reabsorption by tubule Cystatin C

Nucleic acid breakdown molecule. Constant production, unaffected by diet, not secreted, expensive

(ii) Clearance

Best way of estimating GFR is by measuring clearance of a substance from plasma.

Clearance = the amount of plasma that is completely cleared of a substance per unit time.

 $CI = [U] \times V / [P]$

U = Urine concentration of substance

V = Volume of urine

P = Plasma concentration of

substance

To be accurate the substance must:

Achieve steady state in plasma

Excreted solely by kidney

Freely filtered

Not secreted, reabsorbed or metabolised by tubule

Good example inulin, but impractical. Typically creatinine clearance, but secreted by proximal tubule, thus overestimates GFR by 10-20% at normal levels. Overestimation greater as renal function deteriorates – more creatinine secreted. Radiolabelled EDTA most accurate (DTPA can be used but slightly secreted). Typically single injection of ⁵¹Cr-EDTA, then measure blood levelsat specified intervals 2-5 hours after injection to demonstrate decay curve.

Tubular function Proximal tubule Major site of electrolyte and glucose reabsorption Secretion of organic acids/drugs and toxins Loop of Henle Generation of osmotic gradient for variable water reabsorption (countercurrent mechanism) Additional NaCL reabsorption Distal tubule/ Hormone sensitive fine tuning collecting duct Aldosterone NaCl reabsorption K+ excretion ADH Water reabsorption H+ excretion dependent on acid base status

Proximal Tubule

Divided into three segments: S1/S2 concerned with reabsorption, S3 predominantly concerned with secretion

Reabsorption

15% Mg ++

65% Na+ *, K+, Ca++

80% Water, phosphate, HCO3-

100% Glucose **, amino acids

* Na+ is the only solute actively reabsorbed via basolateral Na+/K+ pump. Remainder passively reabsorbed down concentration, osmotic (water) or electrochemical gradients ** Glucose absorption threshold 200mg/dL

Glutamine converted to ammonia throughout PCT

Secretion

Drugs and toxins via active organic ion (cation or anion) pumps Liver often converts uncharged molecules to charged ones for excretion

Loop of Henle

Two purposes of LoH

Reabsorption of 25-30% Na+

Generation of vertical osmotic gradient

(i) Thin descending limb

Highly water permeable (aquaporin 1 channels) Negligible solute transport

(ii) Thin ascending limb Minimal water permeability Passive NaCl and urea diffusion down concentration gradient

(iii) Medullary thick ascending limb

Water impermeable 25-30% Na+ reabsorption

Passive transport into cell (Na+K+CLCL2 co transporter*) Active transport out (basolateral Na-K ATPase) *Targeted by loop diuretics

15% Ca++; 60% Mg++ reabsorption

Passive paracellular, driven by electrochemical gradient. Dissipation of gradient by loop diuretics inhibits Ca++ and Mg++ absorption

10-20% HCO3- reabsorption

Minimal K+ reabsorption

Recycling of K+ in TALH crucial to generate electrochemical gradient

Countercurrent mechanism (300-1200 mosm/l)

NaCl and urea (50% from loop; 50% from collecting duct) make interstitium hypertonic. Water osmotically absorbed from TDLH = more concentrated urine at hairpin = more diffusion of solute = more diffusion of water, etc. Under ADH, urea and water diffuse into interstitium. Water rapidly reabsorbed by vasa recta (also aquaporins in *cortical* collecting duct) thereby preserving concentration gradient

Production of Tamm-Horsfall mucoprotein

Distal tubule

Divided into DCT and connecting tubule

Principle cells – aldosterone dependent secretion of K+/absorption of Na+

Intercalated cells – hormone-independent absorption of K+ Distal convoluted tubule:

5-10% Na+ absorption

Passive Na+K+CL2CL2 co-transport, driven by basolateral Na+/K+ ATPase

Co-transporter inhibited by thiazide diuretics

Na+ absorption dependent on luminal [Na+]. – frusemide increases Na+ absorption by DCT (net Na+ loss however)

10-15% Ca+ reabsorption

Passive, independent of Na+ absorption

Driven by basolateral Na+/Ca+ pump (Ca+ out).

Reduced intracellular Na+ 2' thiazides postulated as a reason for hypocalciuric effect but exact mechanism unknown

Connecting tubule:

Sodium absorption and potassium loss under influence of aldosterone K+ secretion rate influenced by sodium delivery, and urine flow rate. Tubular damage impairs potassium secretion (interstitial nephritis etc.)

	Proximal nephron	LOH	Distal nephron
Na+ reabsorption*	67%	25%	8%
Water reabsorption*	65%	15%	20%
Ca++ reabsorption	65%	15%	15%
Mg++ reabsorption	15%	60%	10%
* maximum values			

Xanthines increase filtration pressure and also inhibit t t Na ⁺ Osmotic diuretics acidifying satts modify contents filtrate	Aldosterone Carbonic anhydrase inhibitors Thiazides Amiloride and triamterine Amiloride and triamterine Amiloride and triamterine Na+ Na+ Na+ Na+ Na+ Na+ Na+ Mercurials
Diuretics	
Loop diuretics	inhibit Na+K+CL-CL- pump in TALH Organic acids requiring secretion into PCT for effect. In renal failure more competition for secretion from accumulating toxins. Explains usage of large doses (250mg-1g) for effect in renal failure Up to 25% increased sodium excretion Loss of NaCL, water, K. Mg and Ca
Thiazide diuretics	inhibit NaCL co-transport in DCT 5-10% increased sodium excretion Loss of NaCl, water. Loss of K by increasing sodium load to DCT.
Potassium-sparing	Spironolactone, amiloride, triamterine 5% increased sodium excretion Spironoloctone competes with aldosterone for intracellular mineralocorticoid receptor – inhibits Na-K ATPase Amiloride/triamterine directly blocks sodium channels
Acid-base balance pH 7.35 – 7.45 Tightly controlled by HCO3/CO2 principa Lungs excrete CO2 Kidney	y buffers al buffer system rapidly

Reclamation of all filtered HCO3 Excretion of H+ with generation of HCO3 Mechanisms: glutamine into NH4 and HCO3 in PCT

H-ATPase in DCT excretes H+ and generates HCO3 (H+ buffered by PO4 or as free acid)

Determining appropriateness of compensation

Anion gap and Metabolic acidosis

Na + K - CI - HCO3

Normal < 15-20* High > 15-20*

* Depends on lab measurement. Newer ion-specific techniques more accurate. New classification HIGH = 12 or above

Blood electrochemically neutral. 'Positive' anion gap because more unmeasured anions than cations. Unmeasured cations magnesium, calcium and gamma globulins. Unmeasured anions sulphates, albumin and phosphate. Where a pure loss of bicarbonate occurs, chloride released to 'bridge the gap'. In situations where new acids are produced electrochemical neutrality is maintained (salicylate plus H+), thus chloride remains unchanged

High anion gap	Lactic acidosis Ketoacidosis Salicylate poisoning
Normal anion gap	Gut losses (Vomiting, fistula, diarrhoea) Renal losses (RTA) Chloride ingestion/administration

NB Renal tubular acidosis (RTA) Family of diseases characterized by failure of tubular H+ secretion and urinary acidification:

Type 1	distal failure of H+ secretion Diagnostic triad
	Hyperchloraemic metabolic acidosis
	High urinary pH (>5.5)
	Low serum HCO3
	Associated low sodium, hyperaldosteronism, with
	low potassium (and low citrate)
	Calcium phosphate stone disease – Rx with
	sodium bicarbonate
Type 2	Proximal failure of bicarbonate reabsorption
	Same triad as above, with low sodium and
	potassium
	Citrate normal - no stone disease
	Usually children - growth retardation and
	osteomalacia (Tiny Tim)
Type 3	Actually type 1
Type 4	Impaired distal H+ and K+ secretion. As above but with hyperkalaemia

Metabolic alkalosis

Ingested alkali normally rapidly excreted by kidney. Persistent alkalosis usually due to impairment of HCO3 excretion from kidney, typically due to chloride deficiency. Replacement of CI usually reverses alkalosis. Chloride responsive = Gut losses and diuretics (90% - often with paradoxical aciduria due to aldosterone action) - low urinary CI Chloride unresponsive = mineralocorticoid excess leading to acid and potassium loss from tubule. Normal urinary CI (>15 MEq/I)

Homeostasis and renin-angiotensin axis

NB. Control of renin release is rate-limiting step in RAA axis

ANP	Glucocorticoids
Angiotensin 2	mediates effects via AT1 receptor – efferent constriction>> afferent vasoconstriction
Endothelin	Highly potent vasoconstrictor released from endothelial cell membrane
ANP	Atrial natriuretic peptide (Cogan 1990)
	Released in response to increased intravascular volume Effects
	Increased GFR (dilatation AE and constricts EA) Inhibits juxtaglomerular apparatus (decreased renin, AT2 and aldosterone) = natriuresis Inhibits vasopressin release and effects = diuresis Prevents phase 3 (shutdown) in bilateral UO vs. unilateral UO by maintaining AE dilatation
Nitric oxide	Synthesised by endothelial NOS (eNOS) and released from endothelium
Carbon monoxide	Produced as a byproduct of heme metabolism by Heme oxygenase (HO). Exerts renoprotective effect vs ischaemia, especially in renal medulla

Calcium homeostasis

Major source of cholecalciferol is dermal synthesis from cholesterol Other source from diet Initial 25a-hydroxylation in liver Second 1a-hydroxylation in kidney to form 1,25 dihydroxy-cholecalciferol (calcitriol)

Acts on gut to increase calcium and phosphate reabsorption. Acts on bone to increased calcium resorption

PTH – acts on kidney to stimulate calcium reabsoprtion and phosphate excretion

Calcium in plasma bound to albumin (46%), complexed with citrate/phosphate (7%) or ionized/free (47%). Acidosis displaces Ca from albumin increasing free ionized calcium. Reverse in alkalosis. May

not be identified as serum calcium estimation measures total calcium, not ionized forms.

Erythropoeisis

EPO produced by interstitial cells of kidney in response to low oxygen tension. HIF-1a and HIF-2a stabilised in hypoxic conditions to assemble apparatus for promoting transcription of EPO. Anaemia in renal failure simple secondary to loss of functioning interstitial cells.